Микротрубочки, их строение и функции. Строение и функции микротрубочек Состав микротрубочек




Общие свойства

Одним из обязательных компонентов цитоскелета эукариот являются микротрубочки (рис. 265). Это нитчатые неветвящиеся структуры толщиной 25 нм, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины микротрубочек при полимеризации образуют полые трубки, откуда и их название. Длина их может достигать нескольких микрометров; самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев.

Микротрубочки обнаруживаются в цитоплазме интерфазных клеток, где они располагаются поодиночке или небольшими рыхлыми пучками, или в виде плотноупакованных микротрубочек в составе центриолей, базальных телец и в ресничках и жгутиках. При делении клеток большая часть микротрубочек клетки входит в состав веретена деления.

В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм (рис. 266). Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку (рис. 267). Размер мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Рис. 267. Стадии самосборки микротрубочек

Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедниц: из α-тубулина и β-тубулина, которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. Обе субъединицы мономера тубулина связаны с ГТФ, однако на α-субъдинице ГТФ не подвергается гидролизу, в отличие от ГТФ на β-субъединице, где при полимеризации происходит гидролиз ГТФ до ГДФ. При полимеризации молекулы тубулина объединяются таким образом, что с β-субъединицей одного белка ассоциируется α-субъединица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий плюс-конец и медленно растущий минус-конец (рис. 268).

При достаточной концентрации белка полимеризация происходит спонтанно. При спонтанной полимеризации тубулинов осуществляется гидролиз одной молекулы ГТФ, связанной с β-тубулином. Во время наращивания длины микротрубочки связывание тубулинов идет с большей скоростью на растущем плюс-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствуют понижение температуры и наличие ионов Са 2+ .

Существует ряд веществ, которые влияют на полимеризацию тубулина. Так, алкалоид колхицин, содержащийся в безвременнике осеннем (Colchicum autumnale ), связывается с отдельными молекулами тубулина и предотвращает их полимеризацию. Это приводит к падению концентрации свободного тубулина, способного к полимеризации, что вызывает быструю разборку цитоплазматических микротрубочек и микротрубочек веретена деления. Таким же действием обладают колцемид и нокодозол, при отмывании которых происходит полное восстановление микротрубочек.

Стабилизирующим действием на микротрубочки обладает таксол, который способствует полимеризации тубулина даже при его низких концентрациях.

Все это показывает, что микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться.

В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, так называемые МАР-белки (MAP - microtubule associated proteins). Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина (рис. 269).

В последнее время процесс сборки и разборки микротрубочек стали наблюдать в живых клетках. После введения в клетку меченных флуорохромами антител к тубулину и при использовании электронных систем усиления сигнала в световом микроскопе можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек со ставляет всего лишь 5 мин. Так, за 15 мин около 80% всей популяции микротрубочек обновляется. При этом отдельные микротрубочки могут на растущем конце медленно (4-7 мкм/мин) удлиняться, а затем достаточно быстро (14-17 мкм/мин) укорачиваться. В живых клетках микротрубочки в составе веретена деления имеют время жизни около 15-20 с. Считается, что динамическая нестабильность цитоплазматических микротрубочек связана с задержкой гидролиза ГТФ, это приводит к тому, что на плюс-конце микротрубочки образуется зона, содержащая негидролизованные нуклеотиды («ГТФ-колпачок»). В этой зоне молекулы тубулина связываются с большим сродством друг к
другу, и, следовательно, скорость роста микротрубочки возрастает. Наоборот, при потере этого участка, микротрубочки начинают укорачиваться.

Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов). Такая стабилизация наблюдается в большой степени в дифференцированных клетках. Стабилизация микротрубочек связана или с модификацией тубулинов или с их связыванием с дополнительными (MAP) белками микротрубочек и с другими клеточными компонентами.

Ацетилирование лизина в составе тубулинов значительно увеличивает стабильность микротрубочек. Другим примером модификации тубулинов может быть удаление терминального тирозина, что также характерно для стабильных микротрубочек. Эти модификации обратимы.

Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как реснички и жгутики, как веретено клетки во время митоза, как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др.

В целом же роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки; при растворении микротрубочек клетки, имевшие сложную форму, стремятся приобрести форму шара. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную, систему движения. Микротрубочки цитоплазмы в ассоциации со специфическими ассоциированными моторными белками образуют АТФазные комплексы, способные приводить в движение клеточные компоненты.

Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, в отростках меланоцитов, амеб и других изменяющих свою форму клетках (рис. 270). Они могут быть выделены сами или же можно выделить их образующие белки: это те же тубулины со всеми их свойствами.

Центры организации микротрубочек

Рост микротрубочек цитоплазмы происходит полярно: наращивается плюс-конец микротрубочки. Так как время жизни микротрубочек очень коротко, то должно постоянно происходить образование новых микротрубочек. Процесс начала полимеризации тубулинов - нуклеация, происходит в четко ограниченных участках клетки, в так называемых центрах организации микротрубочек (ЦОМТ ). В зонах ЦОМТ осуществляется закладка коротких микротрубочек, обращенных своими минус-концами к ЦОМТ. Считается, что в зонах ЦОМТ минус-концы заблокированы специальными белками, предотвращающими или ограничивающими деполимеризацию тубулинов. Поэтому при достаточном количестве свободного тубулина будет наращиваться длина микротрубочек, отходящих от ЦОМТ. В качестве ЦОМТ в клетках животных участвуют главным образом клеточные центры, содержащие центриоли, о чем будет сказано позже. Кроме того, в качестве ЦОМТ может служить ядерная зона и во время митоза полюса веретена деления.

Наличие центров организации микротрубочек доказывается прямыми экспериментами. Так, если в живых клетках полностью деполимеризовать микротрубочки или с помощью колцемида или путем охлаждения клеток, то после снятия воздействия первые признаки появления микротрубочек будут проявляться в виде радиально расходящихся лучей, отходящих от одного места (цитастер). Обычно у клеток животного происхождения цитастер возникает в зоне клеточного центра. После такой первичной нуклеации микротрубочки начинают отрастать от ЦОМТ и заполнять всю цитоплазму. Следовательно, растущие периферические концы микротрубочек будут всегда плюс-концами, а минус-концы будут располагаться в зоне ЦОМТ (рис. 271 и 272).

Цитоплазматические микротрубочки возникают и расходятся от одного клеточного центра, с которым многие теряют связь, могут быстро разбираться или, наоборот, стабилизироваться при ассоциации с дополнительными белками.

Одно из функциональных назначений микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного скелета, необходимого для поддержания формы клетки. У дисковидных по форме эритроцитов амфибий по периферии клетки лежит жгут циркулярно уложенных микротрубочек; пучки микротрубочек характерны для различных выростов цитоплазмы (аксоподии простейших, аксоны нервных клеток и т.д.).

Действие колхицина, вызывающего деполимеризацию тубулинов, сильно меняет форму клетки. Так, если отросчатую и плоскую клетку в культуре фибробластов обработать колхицином, то она теряет полярность. Точно таким же образом ведут себя другие клетки: колхицин прекращает рост клеток хрусталика, отростков нервных клеток, образование мышечных трубок и т.д. Так как при этом не исчезают элементарные формы присущего клеткам движения, такие как пиноцитоз, ундулирующие движения мембран, образование мелких псевдоподий, то роль микротрубочек заключается в образовании каркаса для поддержания клеточного тела, для стабилизации и укрепления клеточных выростов. Кроме того, микротрубочки участвуют в процессах роста клеток. Например, у растений в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму.

Создавая такой внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения внутриклеточных компонентов, задавать своим расположением пространства для направленных потоков разных веществ и для перемещения крупных структур. Так, в случае меланофоров (клетки, содержащие пигмент меланин) рыб при росте клеточных отростков гранулы пигмента передвигаются вдоль пучков микротрубочек. Разрушение микротрубочек колхицином приводит к нарушению транспорта веществ в аксонах нервных клеток, к прекращению экзоцитоза и блокаде секреции. При разрушении микротрубочек цитоплазмы происходит фрагментация и разбегание по цитоплазме аппарата Гольджи, разрушение митохондриального ретикулума.

Динеины и кинезины - моторные белки

Долгое время считалось, что участие микротрубочек в движении цитоплазматических компонентов заключается лишь в том, что они создают систему упорядоченного движения. Иногда в популярной литературе цитоплазматические микротрубочки сравнивают с железнодорожными рельсами, без которых движение поездов невозможно, но которые сами по себе ничего не двигают. Одно время предполагали, что двигателем, локомотивом, может быть система актиновых филаментов, но оказалось, что механизм внутриклеточного перемещения различных мембранных и немембранных компонентов связан с группой иных белков.

Прогресс был достигнут при изучении так называемого аксонального транспорта в гигантских нейронах кальмара. Аксоны - отростки нервных клеток, могут иметь большую длину и заполнены большим числом микротрубочек и нейрофиламентов. В аксонах живых нервных клеток можно наблюдать перемещение различных мелких вакуолей и гранул, которые двигаются как от тела клетки к нервному окончанию (антероградный транспорт), так и в противоположном направлении (ретроградный транспорт). Если аксон перетянуть тонкой лигатурой, то такой транспорт приведет к скоплению мелких вакуолей по обе стороны от перетяжки. Вакуоли, двигающиеся антероградно, содержат различные медиаторы, в том же направлении могут двигаться и митохондрии. Ретроградно двигаются вакуоли, образовавшиеся в результате эндоцитоза при рециклировании мембранных участков. Эти движения происходят с относительно высокой скоростью: от тела нейрона - 400 мм в сутки, в направлении к нейрону - 200-300 мм в сутки (рис. 273).

Оказалось, что из отрезка гигантского аксона кальмара можно выделить аксоплазму, содержимое аксона. В капле выделенной аксоплазмы продолжается движение мелких вакуолей и гранул. С помощью видеоконтрастного устройства можно видеть, что движение мелких пузырьков происходит вдоль тонких нитчатых структур, вдоль микротрубочек. Из этих препаратов были выделены белки, ответственные за движение вакуолей. Один из них кинезин , белок с молекулярной массой около 300 тыс. Он состоит из двух сходных тяжелых полипептидных цепей и нескольких легких. Каждая тяжелая цепь образует глобулярную головку, которая при ассоциации с микротрубочкой обладает АТФазной активностью, в то время как легкие цепи связываются с мембраной пузырьков или других частиц (рис. 274). При гидролизе АТФ изменяется конформация молекулы кинезина и генерируется перемещение частицы в направлении к плюс-концу микротрубочки. Оказалось возможным приклеить, иммобилизовать молекулы кинезина на поверхности стекла; если к такому препарату в присутствии АТФ добавить свободные микротрубочки, то последние начинают двигаться. Наоборот, можно иммобилизовать микротрубочки, но если добавить к ним мембранные пузырьки, связанные с кинезином, пузырьки начинают двигаться вдоль микротрубочек.

Существует целое семейство кинезинов, обладающих сходными моторными головками, но отличающихся хвостовыми доменами. Так, цитозольные кинезины участвуют в транспорте по микротрубочкам везикул, лизосом и других мембраных органелл. Многие из кинезинов связываются специфически со своими грузами. Некоторые участвуют в переносе только митохондрий, другие - только синаптических пузырьков. Кинезины связываются с мембранами через мембранные белковые комплексы - кинектины. Кинезины веретена деления участвуют в образовании этой структуры и в расхождении хромосом.

За ретроградный транспорт в аксоне отвечает другой белок - цитоплазматический динеин (рис. 275). Он состоит из двух тяжелых цепей - головок, взаимодействующих с микротрубочками, нескольких промежуточных и легких цепей, которые связываются с мембранными вакуолями. Цитоплазматический динеин является моторным белком, переносящим грузы к минус-концу микротрубочек. Динеины также делятся на два класса: цитозольные, участвующие в переносе вакуолей и хромосом, и аксонемные, отвечающие за движение ресничек и жгутиков.

Цитоплазматические динеины и кинезины были обнаружены практически во всех типах клеток животных и растений.

Таким образом, и в цитоплазме движение осуществляется по принципу скользящих нитей, только вдоль микротрубочек перемещаются не нити, а короткие молекулы - «движители», связанные с перемещающимися клеточными компонентами. Сходство с актомиозиновым комплексом этой системы внутриклеточного транспорта заключается в том, что образуется двойной комплекс (микротрубочка + «движитель»), обладающий высокой АТФазной активностью.

Как мы видим, микротрубочки образуют в клетке радиально расходящиеся поляризованные фибриллы, плюс-концы которых направлены от центра клетки к периферии. Наличие же плюс- и минус-направленных моторных белков (кинезинов и динеинов) создает возможность для переноса в клетке её компонентов как от периферии к центру (эндоцитозные вакуоли, рециклизация вакуолей ЭПР и аппарата Гольджи и др.), так и от центра к периферии (вакуоли ЭПР, лизосомы, секреторные вакуоли и др.) (рис. 276). Такая полярность транспорта создается за счет организации системы микротрубочек, возникающих в центрах их организации, в клеточном центре.

Полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных во многих клеточных процессах.

Строение

Микротрубочки - это структуры, в которых 13 протофиламентов, состоящих из гетеродимеров α- и β-тубулина, уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний - около 15.

Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца - минус-конца - тубулиновые единицы отщепляются.

β-тубулин

В образовании микротрубочки выделяют три фазы:

  • Замедленная фаза, или нуклеация. Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной.
  • Фаза полимеризации, или элонгация. Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счёт чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической, и скорость роста замедляется вплоть до вступления в следующую фазу.
  • Фаза стабильного состояния. Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.

Лабораторные исследования показывают, что сборка микротрубочек из тубулинов происходит только в присутствии гуанозинтрифосфата и ионов магния .

Видео по теме

Динамическая нестабильность

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома , локализованная вблизи ядра , выступает в клетках животных и многих протистов как центр организации микротрубочек (ЦОМТ): они растут от неё к периферии клетки. В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова. При присоединении к микротрубочке молекулы тубулина, несущие ГТФ , образуют «шапочку», которая обеспечивает рост микротрубочки. Если локальная концентрация тубулина падает, связанная с бета-тубулином ГТФ постепенно гидролизуется. Если полностью гидролизуется ГТФ «шапочки» на +-конце, это приводит к быстрому распаду микротрубочки. Таким образом, сборка и разборка микротрубочек связана с затратами энергии ГТФ.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена .

Функция

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными . Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые - связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

  • цитоплазматические динеины ;

Организация и динамика

Микротрубочки чрезмерно чувствительны к биотическим и абиотическим факторам окружающей среды (холоду, освещению, засухе, засолению, влиянию гербицидов и пестицидов , затоплению, сжатию, воздействию электрического поля , давлению и силе тяжести), а также к фитогормонам , антимитотическим препаратам и ряду других биологически активных соединений . Микротрубочки являются полыми полярными цилиндрическими филаментами диаметром свыше 24 нм, которые собираются из гетеродимеров α-и β-тубулина , которые в положении «голова-к-хвосту» формируют 13 протофиламентов.

В клетках высших растений присутствуют четыре типа построений микротрубочек:

Белки, ассоциированные с микротрубочками

Все компоненты цитоскелета и другие органеллы связаны между собой рядом специфических белков, ассоциированных с микротрубочками (БАМ ). В животных клетках наиболее исследованными БАМ является tau и БАМ2 , которые стабилизируют микротрубочки и присоединяют их к другим клеточным структурам, а также транспортные белки динеин и кинезин . Функционирование различных групп растительных микротрубочек зависит от наличия изоформ БАМ из семьи БАМ 65 и регуляторных киназ и фосфатаз . В частности, высококонсервативный животный гомолог семьи БАМ65 важен для получения микротрубочками определенных конфигураций на протяжении развития растения . Ориентация и организация различных популяций и типов построений микротрубочек является ткане- и органоспецифической .

Построение корня Резуховидки Таля Arabidopsis thaliana L. типично для двудольных растений . Ближайшим к поверхности корня является эпидермальный слой, клетки которого в зрелой зоне в зависимости от способности инициировать развитие корневых волосков являются трихобластами или атрихобластами . Глубже расположены накопительный безхлоропластный кортикальный слой с многочисленными межклетниками и плазмодесмами и слой эндодермальных клеток с поясками Каспари на антиклинальных поверхностях . Центральный цилиндр корня формируют паренхимные клетки перицикла , которые способны к быстрому делению, и элементы ксилемы и флоэмы . Присутствует и функциональное разграничение корневых зон: зоны деления, элонгации, созревания, а также переходная зона на границе зон инициации и элонгации . С перициклом формируются боковые корни, а с трихобластами эпидермального слоя - корневые волоски . Кончик корня покрыт корневым чехликом со специфической морфологией клеток колумеллы.

Кортикальные микротрубочки

Ацентросомальные кортикальные микротрубочки (КМТ ) важны для морфогенеза растений, регуляции клеточного деления и элонгации . Высокодинамическая популяция мембраносвязанных коротких КМТ быстро реориентуется из интерфазного поперечного положения в продольное при элонгации клетки . Ацентросомальные кортикальные микротрубочки имеют неупорядоченное размещение плюс-концов и обнаруживают динамическую нестабильность, а свободные минус-концы КМТ медленно деполимеризируются, то есть КМТ самоорганизуются гибридным механизмом динамической нестабильности и тредмилинга . Энуклеация происходит по всей поверхности плазматической мембраны . Белок SPR1 регулирует динамику и организацию плюс-конца КМТ растений, что сказывается на анизотропном росте клетки . Ацентросомальные кортикальные микротрубочки располагаются параллельно целлюлозным микрофибриллам

Белки микротрубочек

Функции микротрубочек

Так же как и микрофибриллы, микротрубочки под-вержены функциональной изменчивости. Для них ха-рактерны самосборка и саморазборка, причем раз-борка происходит до тубулиновых димеров. Соответ-ственно микротрубочки мо-гут быть представлены боль-шим или меньшим количе-ством в связи с преоблада-нием процессов либо саморазборки, либо самосборки микротрубочек из фонда гло-булярного тубулина гиало-плазмы. Интенсивные про-цессы самосборки микротру-бочек обычно приурочены к местам крепления клеток к субстрату, т. е. к местам усиленной полимеризации фибриллярного актина из глобулярного актина гиало-плазмы. Такая корреляция степени развития этих двух механохимических систем не случайна и отражает их глубокую функциональную взаимосвязь в целостной опорно-сократимой и транс-портной системе клетки.

  • микротрубочки формула

  • микротрубочками образованы

  • строение микротрбуочек

  • микро и макро трубочки

  • в каких органеллх есть микротрубочки

Основная статья: Субмембранный комплекс

Расположение микротрубочек

Микро-трубочки располагаются, как правило, в самых глубоких слоях примембранного цитозоля. Поэтому периферические микротру-бочки надлежало бы рассматривать как часть динамичного, организующего микротрубочкового «скелета» клетки. Однако и сократимые, и скелетные фибриллярные структуры перифериче-ского цитозоля также связаны непосредственно с фибриллярны-ми структурами основной гиалоплазмы клетки. В функциональ-ном отношении периферическая опорно-сократимая фибрилляр-ная система клетки находится в теснейшем взаимодействии с системой периферических микротрубочек. Это дает нам основа-ние рассматривать последние как часть субмембранной системы клетки.

Белки микротрубочек

Система микротрубочек являет-ся вторым компонентом опорно-сократимого аппарата, находящаяся, как правило, в тес-ном контакте с микрофибриллярным компонентом. Стенки микро-трубочек образованы в попереч-нике чаще всего 13 димерными глобулами белка, каждая глобу-ла состоит из α- и β-тубулинов (рис. 6). Последние в большин-стве микротрубочек расположены в шахматном порядке. Тубулин составляет 80% белков содержа-щихся в микротрубочках. Ос-тальные 20% приходятся на до-лю высокомолекулярных белков МАР1, МАР2 и низкомолекуляр-ного тау-фактора. МАР-белки (microtubule-associated proteins- белки, связанные с микротрубоч-ками) и тау-фактор представля-ют собой компоненты, необходи-мые для полимеризации тубулина. В их отсутствие самосборка микротрубочек путем полимери-зации тубулина крайне затруд-нена и образующиеся микротру-бочки сильно отличаются от на-тивных.

Микротрубочки — очень лабильная структура, так, микро-трубочки теплокровных животных, как правило, разрушаются на холоде. Существуют и холодоустойчивые микротрубочки, например в нейронахцентральной нервной системы позвоноч-ных их количество варьирует от 40 до 60%. Термостабильные и термолабильные микротрубочки не различаются по свойствам входящего в их состав тубулина; по-видимому, эти отличия определяются добавочными белками. В нативных клет-ках по сравнению с микрофибриллами основная часть микротрубочковой субмем-бранной системы располага-ется в более глубоко лежа-щих участках цитоплазмы Материал с сайта http://wiki-med.com

Функции микротрубочек

Так же как и микрофибриллы, микротрубочки под-вержены функциональной изменчивости. Для них ха-рактерны самосборка и саморазборка, причем раз-борка происходит до тубулиновых димеров.

Микротрубочки, тонкое строение, молекулярная организация

Соответ-ственно микротрубочки мо-гут быть представлены боль-шим или меньшим количе-ством в связи с преоблада-нием процессов либо саморазборки, либо самосборки микротрубочек из фонда гло-булярного тубулина гиало-плазмы. Интенсивные про-цессы самосборки микротру-бочек обычно приурочены к местам крепления клеток к субстрату, т. е. к местам усиленной полимеризации фибриллярного актина из глобулярного актина гиало-плазмы. Такая корреляция степени развития этих двух механохимических систем не случайна и отражает их глубокую функциональную взаимосвязь в целостной опорно-сократимой и транс-портной системе клетки.

Материал с сайта http://Wiki-Med.com

На этой странице материал по темам:

  • что такое микротрубочки значение

  • найдите в тескте особенности стрления микротрубочек

  • функций микротрубочек

  • реферат по теме микротрубочки

  • микротрубочками образованы

В клетках микротрубочки принимают участие в создании ряда временных (цитоскелет интерфазных клеток, веретено деления) или постоянных (центриоли, реснички, жгутики) структур.

Микротрубочки представляют собой прямые, неветвящиеся длинные полые цилиндры (см.

Микротрубочки, их строение и функции.

рис. 18). Их внешний диаметр составляет около 24 нм, внутренний просвет имеет ширину 15 нм, а толщина стенки - 5 нм. Стенка микротрубочек построена за счет плотно уложенных округлых субъединиц диаметром около 5 нм. В электронном микроскопе на поперечных сечениях микротрубочек видны большей частью 13 субъединиц, выстроенных в виде однослойного кольца. Микротрубочки, выделенные из разных источников (реснички простейших, клетки нервной ткани, веретено деления), имеют сходный состав и содержат белки - тубулины. Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, фибробластов и других изменяющих свою форму клеток.

Одно из функциональных значений таких микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного каркаса (цитоскелета), необходимого для поддержания формы клетки.

Создавая внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения клетки в целом и ее внутриклеточных компонентов, задавать своим расположением векторы для направленных потоков разных веществ и для перемещения крупных структур.

Разрушение микротрубочек колхицином нарушает транспорт веществ в аксонах нервных клеток, приводит к блокаде секреции и т.д.

9. Лизосомы: строение, функции, классификация

Лизосомы - это разнообразный класс вакуолей размером 0,2-0,4 мкм, ограниченных одиночной мембраной. Характерным признаком лизосом является наличие в них гидролитических ферментов - гидролаз (протеиназы, нуклеазы. глюкозидазы, фосфатазы, липазы), расщепляющих различные биополимеры при кислом рН. Лизосомы были открыты в 1949 г. де Дювом.

Среди лизосом можно выделить по крайней мере 3 типа: первичные лизосомы, вторичные лизосомы (фаголизосомы и аутофагосомы) и остаточные тельца. Разнообразие морфологии лизосом объясняется тем, что эти частицы участвуют в процессах внутриклеточного переваривания, образуя сложные пищеварительные вакуоли как экзогенного (внеклеточного), так и эндогенного (внутриклеточного) происхождения.

Первичные лизосомы представляют собой мелкие мембранные пузырьки размером около 0,2-0,5 мкм, заполненные бесструктурным веществом, содержащим гидролазы, в том числе активную кислую фосфатазу, которая является маркерным для лизосом ферментом. Эти мелкие пузырьки практически очень трудно отличить от мелких везикул на периферии зоны аппарата Гольджи, которые также содержат кислую фосфатазу. Местом ее синтеза является гранулярная эндоплазматическая сеть.

Вторичные лизосомы, или внутриклеточные пищеварительные вакуоли, формируются при слиянии первичных лизосом с фагоцитарными или пиноцитозными вакуолями, образуя фаголизосомы, или гетерофагосомы, а также с измененными органеллами самой клетки, подвергающимися перевариванию (аутофагосомы). Вещества, попавшие в состав вторичной лизосомы, расщепляются гидролазами до мономеров, которые транспортируются через мембрану лизосомы в гиалоплазму, где они реутилизируются, т.е. включаются в различные обменные процессы.

Однако расщепление, переваривание биогенных макромолекул внутри лизосом может идти в ряде клеток не до конца. В этом случае в полостях лизосом накапливаются непереваренные продукты. Такая лизосома носит название «телолизосома», или остаточное тельце. Остаточные тельца содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Например, у человека при старении организма в клетках мозга, печени и в мышечных волокнах в телолизосомах происходит отложение «пигмента старения» - липофусцина.

Функциональное значение аутофагоцитоза еще неясно. Есть предположение, что этот процесс связан с отбором и уничтожением измененных, поврежденных клеточных компонентов. В этом случае лизосомы выполняют роль внутриклеточных «чистильщиков», убирающих дефектные структуры.

Предыдущая12345678910111213141516Следующая

ЦИТОСКЕЛЕТ

Цитоскелет представляет собой сложную динамичную сиситему микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул. Указанные компоненты цитоскелета являются немембранными органеллами; каждый из них образует в клетке трехмерную сетъ с характерньм распределеием, которая взаимодействует с сетями из другах компонентов. Они входят также в состав ряда другах сложно организованных органелл (ресничек, жгутиков, микроворсинок клеточного центра) и клеточных соединений (десмосом, полудесмосом опоясывающих десмосом).

Основные функции цитоскелета:

1. поддержание и изменение формы клетки;

2. распределение и перемещение компонентов клетки;

3. транспорт веществ в клетку и из нее;

4. обеспечение подвижности клетки;

5. участие в межклеточных соединениях.

Микротрубочки – наиболее крупные компоненты цитоскелета. Они представляют собой полые цилиндрические образования, имеющие форму трубочек, длиной до нескольких микрометров (в жгутиках более 50 нм) диаметром около 24-25 нм, с толшиной стенки 5 нм и диаметром просвета 14-15 нм (рис. 3-14).

Рис. 3-14. Страение микротрубочки. 1 — мономеры тубулина, образующие протофиламенты, 2 — микротрубочка, 3 — пучок микротрубочек (МТ).

Стенка микротрубочки состоит из спиралевидно уложенных нитей – протофиламентов толшиной 5 нм (которым на поперечном разрезе соответствуют 13 субъединиц), образованных димерами из белковых молекул α- и β-тубулина.

Функции микротрубочек:

(1) поддержание формы и полярности клетки, распределения ее компонентов,

(2) обеспечение внутриклеточного транспорта,

(3) обеспечение движения ресничек, хромосом в митозе (формируют ахроматиновое веретено, необходимое для клеточного деления),

(4) образование основы других органелл (центриолей, ресничек).

Расположение микротрубочек. Микротрубочки располагаются в цитоплазме в составе нескольких систем:

а) в виде отдельных элементов, разбросанных по всей цитоплазме и формирующих сети;

б) в пучках, где они связаны тонкими поперечньми мостиками (в отростках нейронов, в составе митотического веретена, сперматиды, периферического "кольца" тромбоцитов);

в) частично сливаясь друг с другом с формированием пар, или блетов (в аксонеме ресничек и жгутиков), и триплетов (в базальном тельце и центриоли).

Образование и разрушение микротрубочек. Микротрубочки представляют собой лабильную систему, в которой имеется равновесие между их постоянной сборкой и диссоциацией. У большинства мики трубочек один конец (обозначаемый как «–» закреплен, а другой («+») свободен и участвует в их удлинении или деполимеризации. Структурами, обеспечивающими образование микротрубочек, служат особые мелкие сферические тельца — сателлиты (от англ. satellite – спутник), отчего последние называют центрами организации микротрубочек (ЦОМТ). Сателлиты содержатся в базальных тельцах ресничек и клеточном центре (см. рис. 3-15 и 3-16). После полного разрушения микротрубочек в цитоплазме они отрастают от клеточного центра со скоростью около 1 мкм/мин., а их сеть вновь восстанавливается менее, чем за полчаса. К ЦОМТ относят также и центромеры хромосом.

Убедительные опыты показали, что после инъекции меченых аминокислот вблизи тел клеток эти аминокислоты поглощаются телами и включаются в белок, который затем переносится по аксону к его окончаниям. В этих опытах установлены два общих типа аксонного транспорта: медленный транспорт, идущий со скоростью около 1 мм в сутки, и быстрый, идущий со скоростью нескольких сотен миллиметров в сутки. (ШЕППЕРД)

Связь микротрубочек с другими структурами клетки и межд боп осуществляется посредством ряда белков, выполняющих различные функции. (1) Микротрубочки с помощью вспомогательных белков креплены к другим клеточным компонентам. (2) По своей длине трубочки образуют многочисленные боковые выросты (которые состоят из белков, ассоциированных с микротрубочками) длиной до нескольких десятков нанометров. Благодаря тому, что такие белки последовательно и обратимо связываются с органеллами, транспортными пузырьками, секреторными гранулами и другами образованиями, микротрубочки (которые сами не обладают сократимостью) обеспечивают перемещение, указанных структур по цитоплазме . (3) Некоторые белки, ассоциированные с микротрубочками, стабилизируют их структуру, а связываясь с их свободными краями, препятствуют деполимеризации.

Угнетение самосборки микротрубочек посредством ряда веществ, являющихся ингибиторами митоза (колхицин, винбластин, винкристин), вызьшает избирательную гибель быстроделящихся клеток. Поэтому некоторые из таких веществ успешно используются для химиотерапии опухолей. Блокаторы микротрубочек нарушают также транспортные процессы в цитоплазме, в частности, секрецию, аксонный транспорт в нейронах. Разрушение микротрубочек приводит к изменениям формы клетки и дезорганизации ее структуры и распределения органелл.

Клеточный центр (цитоцентр)

Клеточный центр образован двумя полыми цилиндрическими структурами длиной 0.3-0.5 мкм и диаметром 0.15-0.2 мкм – центриоляии, которые располагаются вблизи друг друга во взаимно перпендикулярных плоскостях (рис. 3-15). Каждая центриоль состоит из 9 триплетов частично слившихся микротрубочек (А, В и С), связанных поперечными белковьши мостиками ("ручками"). В центральной части центриоли микротрубочки отсутствуют (по некоторым данным, здесь имеется особая центральная нить), что описывается общей формулой (9х3) + 0.

Микрофиламенты

Каждый триплет центриоли связан со сферическими тельцами диаметром 75 нм – сателлитами; расходящиеся от них микротрубочки образуют центросферу.

Рис. 3-15. Клеточный центр (1) и структура центриоли (2). Клеточный центр образован парой центриолей (Ц), расположенных во взаимно-перпендикулярных плоскостях. Каждая Ц состоит из 9 связанных друг с другом триплетов (ТР) микротрубочек (МТ). С каждым ТР посредством ножек связаны сателлиты (С) – глобулярные белковые тельца, от которых отходят МТ.

В неделящейся клетке выявляется одна пара центриолей (диплосома), Которая обычно располагается вблизи ядра. Перед делением в S-периоде интерфазы происходит дупликация центриолей пары, причем под прямым углом к каждой зрелой (материнской) центриоли формируется новая (дочерняя), незрелая процентриоль, в которой вначале имеются лишь 9 единичных микротрубочек, позднее превращающихся в триплеты. Пары центриолей далее расходятся к полюсам клетки, а во время митоза они служат центрами образования микротрубочек ахроматинового веретена деления.

Рис. 3-16. Ресничка. 1 — продольный срез, 2 — поперечный срез. БТ — базальное тельце (образовано триадами микротрубочек), ЦОМТ — центр организации микротрубочек, БК — базальный корешок, ПЛ — плазмолемма, МТА — микротрубочка А, МТВ — микротрубочка В, ПМТ — периферические микротрубочки, ЦМТ — центральные микротрубочки, ЦО — центральная оболочка, ДР — динеиновые ручки, РС — радиаль-ные спицы, НМ — нексиновые мостики.

Одним из обязательных компонентов цитоплазмы растительной клетки являются микротрубочки. В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм. Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку. Размен мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Микротрубочка является полярной структурой, имеющей быстро растущий плюс-конец и медленно растущий минус-конец.

Микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться. При использовании электронных систем усиления сигнала в световом микроскопе можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек составляет всего лишь 5 минут. Так за 15 мин около 80% всей популяции микротрубочек обновляется. В составе веретена деления микротрубоски имеют время жизни около 15-20 с. Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов).

Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как веретено клетки во время митоза как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др.

В целом роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную систему движения. Микротрубочки цитоплазмы а ассоциации со специфичными ассоциированными моторными белками образуют АТФазные комплексы, способные приводить в движение клеточные компоненты. Кроме того, микротрубочки участвуют в процессах роста клеток. У растений, в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму.

Микрофиламенты (microfilamenti) - субмикроскопические немембранные органеллы общего назначения, выполняющие роль цитоскелета.

В зависимости от строения и функции микрофиламенты делятся на:

1) Собственно микрофиламенты;

2) Промежуточные микрофиламенты.

·Собственно микрофиламенты характерны практически для всех клеток и локализованы в кортикальном слое цитоплазмы непосредственно под плазмолеммой.

¨Строение - это тонкие волокна, диаметром от 5 до 7 нм, состоящие из белков: актина, миозина, тропомиозина, a-актинина.

¨Функции - собственно микрофиламенты, являются внутриклеточным сократительным аппаратом, который обеспечивает не только подвижность клетки, а и большинство внутриклеточных движений, потоки цитоплазмы, движение вакуолей, митохондрий, деление клеток.

·Промежуточные микрофиламенты или микрофибриллы (microfibrillae) - это образование белковой структуры.

¨Строение - представляют собой тонкие нити, часто располагающиеся пучками диаметром 10-15 нм. Характерным является то, что структурный состав их различный в разных тканях. Микрофиламенты эпителия состоят из белка - кератина, в клетках мезенхимных тканей из белка - десмина.

¨Функция - отвечают за сохранение клеткой своей формы.

Микротрубочки

Микротрубочки (microtubuli) - субмикроскопические мембранные органеллы, основным назначением которых является создание эластического и одновременно устойчивого цитоскелета, необходимого для поддержания формы клетки.

¨Строение. Микротрубочки построены из глобулярных белков - тубулинов, молекулы которых способны полимеризоваться особым путем, нанизываясь одна на другую, и образуя округлые субъединицы величиной 5 нм. Стенка микротрубочек состоит из плотно уложенных субъединиц, 13 субъединиц образуют кольцо микротрубочки. Внешний диаметр составляет около 24 нм, внутренний просвет имеет ширину 15 нм. Микротрубочки входят в состав сложноорганизованных специальных органелл, таких как центриоли и базальные тельца, а также являются основными структурными элементами ресничек и жгутиков.

¨Функция. В клетках микротрубочки принимают участие в создании ряда временных (цитоскелет интерфазных клеток, веретено деления) и постоянных структур (центриоли, реснички, жгутики).

Реснички и жгутики

Это органеллы специального назначения, встречаются в некоторых клетках различных организмов.

Реснички (cilium) представляют тонкие цилиндрические выросты цитоплазмы.

¨Размеры - имеют постоянный размер 200нм и длину от 5 до 10мкм.

¨Строение - ресничка от основания до верхушки покрыта плазматической мембраной. Внутри выроста располагается осевая нить (аксонема). Аксонема представляет сложную структуру, состоящую в основном из микротрубочек. Проксимальная часть реснички (базальное тело) погружено в цитоплазму. Диаметр аксонемы и базального тельца равны около 150 нм.

Аксонема (filamentum axiale) состоит из 9 дуплетов микротрубочек, которые соединяясь при помощи ручек образует стенку цилиндра аксонемы. В центре аксонемы располагается пора центральных микротрубочек. Система микротрубочек аксонемы имеет формулу (9х2)+2.

Базальное тельце (corpusculum basale) состоит из 9 триплетов микротрубочек, соединяющихся между собой при помощи ручек. Система микротрубочек базального тельца имеет форму (9х3)+0; как и в центриоли. Иногда в основании аксонемы может лежать пара базальных телец, располагающихся под прямым углом друг к другу.

Аксонемы и базальные тельца структурно связаны между собой и составляют единое целое: две микротрубочки триплетов базального тельца являются микротрубочками дублетов аксонем.

Жгутики (flagellum) - это тонкие цилиндрические выросты цитоплазмы, которые по своему строению подобны ресничкам.

¨Размеры - диаметр около 200 нм, длина 150 мкм.

Так же как и реснички имеют базальное тельце и аксонему.

¨Функции - свободные клетки имеющие реснички и жгутики, обладают способностью передвигаться, неподвижные клетки движением ресничек могут перемещать жидкость и карпускулярные частицы.

Включения

Включения цитоплазмы (inclusiones cytoplasmicae) - непостоянные компоненты клетки, возникающие или исчезающие в зависимости от метаболического состояния и не имеющие строго определенного строения.

Различают следующие типы включений:

    Секреторные;

    Трофические;

    Экскреторные;

    Пигментные.

Секреторные включения - округлой формы, образования различных размеров, которые содержат биологически активные вещества, образующиеся в результате секреторной деятельности клетки (гормоны, ферменты и др.)

Трофические включения - это могут быть капельки нейтральных жиров, гликоген, белковые молекулы в виде гранул.

Экскреторные включения - эти включения не содержат ферментов или других активных веществ, и эти продукты, как правило, подлежат удалению из клетки.

Пигментные клетки - могут быть экзогенные (каротин, пылевые частицы, красители) и эндогенными (гемоглобин, гемосидерин, биллирубин, меланин, липофусцин). Наличие их в ткани может приводить к изменению цвета ткани, органа - временно или постоянно.