Сложные эфиры определение и общая формула. Химические свойства сложных эфиров




Сложные эфиры. Среди функциональных производных кислот особое место занимают сложные эфиры -- производные кислот, у которых атом водорода в карбоксильной группе заменен углеводородным радикалом. Общая формула сложных эфиров

где R и R" -- углеводородные радикалы (в сложных эфиpax муравьиной кислоты R -- атом водорода).

Номенклатура и изомерия. Названия сложных эфиров производят от названия углеводородного радикала и названия кислоты, в котором вместо окончания -овая используют суффикс -am, например:

Для сложных эфиров характерны три вида изомерии:

  • 1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку -- с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.
  • 2. Изомерия положения сложноэфирной группировки --СО--О--. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.
  • 3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.

Физические свойства сложных эфиров. Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат -- груши и т. д.

Сложные эфиры высших жирных кислот и спиртов -- воскообразные вещества, не имеют запаха, в воде не растворимы.

Химические свойства сложных эфиров. 1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:

Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:

  • 2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.
  • 3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

17. Строение, классификация, изомерия, номенклатура, способы получения, физические свойства, химические свойства аминокислот

Аминокисломты (аминокарбомновые кисломты) -- органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

Аминокислоты -- бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом. Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы --COOH, так и основные свойства, обусловленные аминогруппой --NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 --CH2 --COOH + HCl > HCl * NH2 --CH2 --COOH (хлороводородная соль глицина)

NH 2 --CH 2 --COOH + NaOH > H 2 O + NH 2 --CH 2 --COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей.

NH 2 --CH 2 COOH N + H 3 --CH 2 COO -

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH 2 --CH 2 --COOH + CH 3 OH > H 2 O + NH 2 --CH 2 --COOCH 3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOC --CH2 --NH --H + HOOC --CH2 --NH2 > HOOC --CH2 --NH --CO --CH2 --NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH 3 + , а карбоксигруппа -- в виде -COO ? . Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

CH 3 COOH + Cl 2 + (катализатор) > CH 2 ClCOOH + HCl; CH 2 ClCOOH + 2NH 3 > NH 2 --CH 2 COOH + NH 4 Cl

В органической химии существует два основных класса эфиров: простые и сложные. Это химические соединения, образующиеся при гидролизе (отщеплении молекулы воды). Простые эфиры (их еще называют этеры) получают при гидролизе соответствующих спиртов, а сложные эфиры (эстеры) – соответствующих спирта и кислоты.

Несмотря на похожее название, простые и сложные эфиры это два совершенно разных класса соединений. Их получают разными путями. Они имеют различные химические свойства. Различаются они и структурной формулой. Общими есть лишь некоторые физические свойства самых известных их представителей.

Физические свойства этеров и эстеров

Простые эфиры - малорастворимые в воде, легкокипящие жидкости, легко воспламеняются. При комнатной температуре, простые эфиры - приятно пахнущие бесцветные жидкости.

Сложные эфиры, имеющие малую молекулярную массу - легко испаряющиеся бесцветные жидкости, приятно пахнут, часто фруктами или цветами. С возрастанием карбоновой цепи ацилгруппы и спиртового остатков, их свойства становятся другими. Такие эфиры твердые вещества. Их точка плавления зависит от длинны углеродных радикалов и структуры молекулы.

Структура простых и сложных эфиров

Оба соединения имеют простую эфирную связь (-О-), но в сложных эфирах она входит в состав более сложной функциональной группы (-COO), в которой первый атом кислорода связан с атомом карбона одинарной связью (-О-), а второй двойной (=О).

Схематически можно изобразить так:

  1. Простой эфир: R–O–R1
  2. Сложный эфир: R-COO-R1

В зависимости от радикалов в R и R1, простые эфиры делят на:

  1. Симметричные эфиры – такие у которых алкильные радикалы идентичны, например, дипропиловыйэфир, диэтиловый эфир, дибутиловый эфир и т.п.
  2. Асимметричные эфиры или смешанные – с разными радикалами, например, этилпропиловый эфир,метилфениловый эфир, бутилизопропиловый и т.д.

Сложные эфиры подразделяют на:

  1. Сложные эфиры спирта и минеральной кислоты: сульфатной (-SO3H), нитратной (-NO2) и др.
  2. Сложные эфиры спирта и карбоновой кислоты, например, С2Н5СО-, С5Н9СО-, СН3СО- и т. д.

Рассмотрим химические свойства эфиров. Простые эфиры имеют низкую реакционную способность, именно благодаря этому их часто применяют как растворители. Они реагируют только в экстремальных условиях, или с высокореакционными соединениями. В отличии от этеров, сложные эфиры более реакционноспособные. Они легко вступают в реакции гидролиза, омыления и др..

Реакция простых эфиров с галогеноводородами:

Большинство простых эфиров могут разлагаться под воздействием бромоводородной кислоти (HBr) с образованием алкилбромидов или при взаимодействии с иодоводородной кислотой (HI) с получениемалкилиодидов.

СН3-О-СН3 + НI = СН3-ОН + СН3I

СН3-ОН + НI = СН3I + Н2О

Образование оксониевых соединений:

Серная, иодная и др. сильные кислоты при взаимодействии с простыми эфирами, образуют оксониевые соединения – продукты соединения высшего порядка.

СН3-О-СН3 + HCl = (CH3)2О ∙ HCl

Взаимодействие простых эфиров с металлическим натрием:

При нагревании с основными металлами, например, металлическим натрием, простые эфиры расщепляются на алкоголяты и алкилнатрий.

СН3-О-СН3 + 2Na = СН3-ОNa + СН3-Na

Автоокисление простых эфиров:

В присутствии кислорода, простые эфиры медленно автоокисляются с образованием гидроперекиси идиалкил пероксида. Автоокисление является спонтанным окислением соединения в воздухе.

С2Н5-О-С2Н5 + О2 = СН3-СН(ООН)-О-С2Н5

Гидролиз сложных эфиров:

В кислой среде эстер гидролизует, образуя соответствующую кислоту и спирт.

СН3-СОО-С2Н5 = СН3-СООН + Н2О

Омыление сложных эфиров:

При повышенной температуре эстеры реагируют с водными растворами сильных оснований, таких как гидроксид натрия или калия, образуя соли карбоновых кислот. Соли жрных карбоновых кислот называют мылами. Побочным продуктом реакции омыления является спирт.

СН3-СОО-С2Н5 + NaОН = СН3-СООNa + С2Н5-ОН

Реакции переэстерефикации (обмена):

Сложные эфиры вступают в реакции обмена при действии спирта (алкоголиз), кислоты (ацидолиз), или при двойном обмене, при взаимодействии двух сложных эфиров.

СН3-СОО-С2Н5 + С3Н7-ОН = СН3-СОО-С3Н7 + С2Н5-ОН

СН3-СОО-С2Н5 + С3Н7-СООН = С3Н7-СОО-С2Н5 + СН3-СООН

СН3-СОО-С2Н5 + С3Н7-СОО-СН3 = СН3-СОО-СН3 + С3Н7-СОО-С2Н5

Реакции взаимодействия с аммиаком:

Сложные эфиры могут взаимодействовать с аммиаком (NН3) с образованием амида и спирта. По тому же принципу реагируют они и с аминами.

СН3-СОО-С2Н5 + NН3 = СН3-СО-NН2 + С2Н5-ОН

Реакции восстановления эстеров:

Эфиры могут быть восстановлены водородом (Н2) в присутствии хромита меди (Cu(CrO2)2).

СН3-СОО-С2Н5 + 2Н2 = СН3-СН2-ОН + С2Н5-ОН

Введение -3-

1. Строение -4-

2. Номенклатура и изомерия -6-

3. Физические свойства и нахождение в природе -7-

4. Химические свойства -8-

5. Получение -9-

6. Применение -10-

6.1 Применение сложных эфиров неорганических кислот -10-

6.2 Применение сложных эфиров органических кислот -12-

Заключение -14-

Использованные источники информации -15-

Приложение -16-

Введение

Среди функциональных производных кислот особое место занимают сложные эфиры - производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.

Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой).

Среди сложных эфиров особое место занимают природные эфиры - жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Цель моей работы заключается в подробном ознакомлении с таким классом органических соединений, как сложные эфиры и углублённом рассмотрении области применения отдельных представителей этого класса.

1. Строение

Общая формула сложных эфиров карбоновых кислот:

где R и R" - углеводородные радикалы (в сложных эфиpax муравьиной кислоты R - атом водорода).

Общая формула жиров:

гдеR", R", R"" - углеродные радикалы.

Жиры бывают “простыми” и “смешанными”. В состав простых жиров входят остатки одинаковых кислот (т. е. R’ = R" = R""), в состав смешанных - различных.

В жирах наиболее часто встречаются следующие жирные кислоты:

Алкановые кислоты

1. Масляная кислота СН 3 - (CH 2) 2 - СООН

3. Пальмитиновая кислота СН 3 - (CH 2) 14 - СООН

4. Стеариновая кислота СН 3 - (CH 2) 16 - СООН

Алкеновые кислоты

5. Олеиновая кислота С 17 Н 33 СООН

СН 3 -(СН 2) 7 -СН === СН-(СН 2) 7 -СООН

Алкадиеновые кислоты

6. Линолевая кислота С 17 Н 31 СООН

СН 3 -(СН 2) 4 -СН = СН-СН 2 -СН = СН-СООН

Алкатриеновые кислоты

7. Линоленовая кислота С 17 Н 29 СООН

СН 3 СН 2 СН = CHCH 2 CH == CHCH 2 CH = СН(СН 2) 4 СООН

2. Номенклатура и изомерия

Названия сложных эфиров производят от названия углеводородного радикала и названия кислоты, в котором вместо окончания -овая используют суффикс - ат, например:

Для сложных эфиров характерны следующие виды изомерии:

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинаетсясо сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.

3. Физические свойства и нахождение в природе

Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат - груши и т. д.

Сложные эфиры высших жирных кислот и спиртов - воскообразные вещества, не имеют запаха, в воде не растворимы.

Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.

Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.

По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) - непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.

4. Химические свойства

1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:

Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:

2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.

3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

5. Получение

1. Реакция этерификации:

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

2. Взаимодействием ангидридов кислот со спиртами:

3. Взаимодействием галоидангидридов кислот со спиртами:

6. Применение

6.1 Применение сложных эфиров неорганических кислот

Эфиры борной кислоты - триалкилбораты - легко получаются нагреванием спирта и борной кислоты с добавкой концентрированной серной кислоты. Борнометиловый эфир (триметилборат) кипит при 65° С, борноэтиловый (триэтилборат) - при 119° С. Эфиры борной кислоты легко гидролизуются водой.

Реакция с борной кислотой служит для установления конфигурации многоатомных спиртов и была неоднократно использована при изучении Сахаров.

Ортокремневые эфиры - жидкости. Метиловый эфир кипит при 122° С, этиловый при 156° С. Гидролиз водой проходит легко уже на холоду, но идет постепенно и при недостатке воды приводит к образованию высоко­молекулярных ангидридных форм, в которых атомы кремния соединены друг с другом через кислород (силоксановые группировки):

Эти высокомолекулярные вещества (полиалкоксисилоксаны) находят применение в качестве связующих, выдерживающих довольно высокую температуру, в частности для покрытия поверхности форм для точной отливки металла.

Аналогично SiCl 4 реагируют диалкилдихлорсиланы, например ((СН 3) 2 SiCl 2 , образуя диалкоксильные производные:

Их гидролиз при недостатке воды дает так называемые полиалкилсилоксаны:

Они обладают разным (но очень значительным) молекулярным весом и представляют собой вязкие жидкости, используемые в качестве термо­стойких смазок, а при еще более длинных силоксановых скелетах - термостойкие электроизоляционные смолы и каучуки.

Эфиры ортотитановой кислоты. Их получают аналогично ортокремневым эфирам по реакции:

Это жидкости, легко гидролизующиеся до метилового спирта и TiO 2 применяются для пропитки тканей с целью придания им водонепроницаемости.

Эфиры азотной кислоты. Их получают действием на спирты смеси азотной и концентрированной серной кислот. Метилнитрат СН 3 ONO 2 , (т. кип. 60° С) и этилнитрат C 2 H 5 ONO 2 (т. кип. 87° С) при осторожной работе можно перегнать, но при нагревании выше температуры кипения или при детонации они очень сильно взрывают.

Нитраты этиленгликоля и глицерина, неправильно называемые нитрогликолем и нитроглицерином, применяются в качестве взрывчатых веществ. Сам нитроглицерин (тяжелая жидкость) неудобен и опасен в обращении.

Пентрит - тетранитрат пентаэритрита С(CH 2 ONO 2) 4 , получаемый обработкой пентаэритрита смесью азотной и серной кислот, - тоже сильное взрывчатое вещество бризантного действия.

Нитрат глицерина и нитрат пентаэритрита обладают сосудорасширя­ющим эффектом и применяются как симптоматические средства при сте­нокардии.

Эфиры фосфорной кислоты - высококипящие жидкости, лишь очень медленно гидролизуемые водой, быстрее щелочами и разбавленными кислотами. Эфиры, образованные этерификацией высших спиртов (и фено­лов), находят применение как пластификаторы пластмасс и для извлече­ния солей уранила из водных растворов.

Известны эфиры типа (RO)2S═O, но они не имеют практического значения.

Из алкилсульфатов - солей сложных эфиров высших спиртов и серной кислоты производят моющие средства. В общем виде образование таких солей можно изобразить уравнениями:

Они и обладают прекрасными моющими способностями. Принцип их действия тот же, что и у обычного мыла, только кислотный остаток серной кислоты лучше адсорбируется частицами загрязнения, а кальцевые соли алкилсерной кислоты растворимы в воде, поэтому это моющее средство стирает и в жесткой, и в морской воде.

6.2 Применение сложных эфиров органических кислот

Наибольшее применение в качестве растворителей получили эфиры уксусной кислоты - ацетаты. Прочие эфиры (кислот молочной - лактаты, масляной - бутираты, муравьиной - формиаты) нашли ограниченное применение. Формиаты из-за сильной омыляемости и высокой токсичности в настоящее время не используются. Определенный интерес представляют растворители на основе изобутилового спирта и синтетических жирных кислот, а также алкиленкарбонаты. Физико-химические свойства наиболее распространенных сложных эфиров приведены в таблице (см. приложение).

Метилацетат СН 3 СООСН 3 . Отечественной промышленностью технический метилацетат выпускается в виде древесно-спиртового растворителя, в котором содержится 50% (масс.) основного продукта. Метилацетат также образуется в виде побочного продукта при производстве поливинилового спирта. По растворяющей способности метилацетат аналогичен ацетону и применяется в ряде случаев как его заменитель. Однако он обладает большей токсичностью, чем ацетон.

Этилацетат С 2 Н 5 СООСН 3 . Получают методом этерификации на лесохимических предприятиях при переработке синтетической и лесохимической уксусной кислоты, гидролизного и синтетического этилового спирта или конденсацией ацетальдегида. За рубежом разработан процесс получения этилацетата на основе метилового спирта.
Этилацетат подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести). Добавка 15-20 % этилового спирта повышает растворяющую способность этилацетата в отношении эфиров целлюлозы, особенно ацетилцеллюлозы.

Пропилацетат СН 3 СООСН 2 СН 2 СН 3 . По растворяющей способности подобен этилацетату.

Изопропилацетат СН3СООСН(СН 3) 2 . По свойствам занимает промежуточное положение между этил- и пропилацетат.

Амилацетат CH 3 COOCH 2 CH 2 CH 2 CH 2 CH 3 , т. кип. 148° С, иногда называют «банановым маслом» (которое он напоминает по запаху). Он образуется в реакции между амиловым спиртом (часто – сивушным маслом) и уксусной кислотой в присутствии катализатора. Амилацетат широко применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.

Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры.

Винилацетат CH 2 =CHOOCCH 3 , образуется при взаимодействии уксусной кислоты с ацетиленом в присутствии катализатора. Это важный мономер для приготовления поливинилацетатных смол, клеев и красок.

Мыла - это соли высших карбоновых кислот.Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли - жидкие мыла.

Мыла получаются при гидролизе жиров в присутствии щелочей:

Обычное мыло плохо стирает в жесткой воде и совсем не стирает в морской воде, так как содержащиеся в ней ионы кальция и магния дают с высшими кислотами нерастворимые в воде соли:

Ca 2+ + 2C 17 H 35 COONa→Ca(C 17 H 35 COO) 2 ↓ + 2Na +

В настоящее время для стирки в быту, для промывки шерсти и тканей в промышленности используют синтетические моющие средства, которые обладают в 10 раз большей моющей способностью, чем мыла, не портят тканей, не боятся жесткой и даже морской воды.

Заключение

Исходя из вышесказанного, можно сделать вывод, что сложные эфиры находят широкое применение, как в быту, так и в промышленности. Некоторые из сложных эфиров готовятся искусственно и под названием «фруктовых эссенций» широко применяются в кондитерском деле, в производстве прохладительных напитков, в парфюмерии и во многих других отраслях. Жиры используют для многих технических целей. Однако особенно велико их значение как важнейшей составной части рациона человека и животных, наряду с углеводами и белками. Прекращение использования пищевых жиров в технике и замена их непищевыми материалами – одна из важнейших задач народного хозяйства. Эта задача может быть разрешена только при достаточно основательных знаниях о сложных эфирах и дальнейшем изучении этого класса органических соединений.

Использованные источники информации

1. Цветков Л.А. Органическая химия: Учебник для 10-11 классов общеобразовательных учебных заведений. - М.: Гуманит. изд. центр ВЛАДОС, 2001;

2. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1-2, М.,1969-70.;

3. Глинка Н. Л. Общая химия: Учебное пособие для вузов. – 23-е изд., испр./ Под ред. В. А. Рабиновича. – Л.: Химия, 1983;

4. http://penza.fio.ru

5. http://encycl.yandex.ru

Приложение

Физико-химические свойства сложных эфиров

Название Давление пара при 20°С, кПа Молеку- лярная масса Темпера- тура кипения при 101,325 кПа. °С Плотность при 20°С. г/см 3 Показа- тель перелом- ления n 20 Поверхнос- тное натяжение 20°С. мН/м
Метилацетат 23,19 74,078 56,324 0,9390 1,36193 24,76 25,7
Этилацетат 9,86 88,104 77,114 0,90063 1,37239 23,75
Пропилацетат 3,41 102,13 101,548 0,8867 1,38442 20,53
Изопропилацетат 8,40 102,13 88,2 0,8718 1,37730 22,10 22
Бутилацетат 2,40 116,156 126,114 0,8813 1,39406 25,2
Изоиутилацетат 1,71 116,156 118 0,8745 1,39018 23,7
Втор-Бутилацетат - 116,156 112,34 0,8720 1,38941 23,33 22,1
Гексилацетат - 114,21 169 0,890 - -
Амилацетат 2,09 130,182 149,2 0,8753 1,40228 25,8
Изоамилацетат 0,73 130,182 142 0,8719 1,40535 24,62 21,1
Ацетат монометилового эфира этиленгликоля (метилцеллозольвацетат) 0,49 118,0 144,5 1,007 1,4019 -
Ацетат моноэтилового эфира этиленгликоля (этилцеллозольвацетат) 0,17 132,16 156,4 0,9748 1,4030 -
Этиленгликольмоноацетат - 104 181-182 1,108-1,109 - -
Этиленгликольдиацетат 0,05 146 186-190 1,106 - -
Циклогексилацетат 0,97 142 175 0,964 1,4385 -
Этиллактат 0,13 118,13 154,5 1,031 1,4118 28,9 17,3
Бутиллактат 0,05 146,0 185 0,97 - -
Пропиленкарбонат - 102,088 241,7 1,206 1,4189 -

Сложными эфирами принято называть соединения, полученные по реакции этерификации из карбоновых кислот. При этом происходит замещение ОН- из карбоксильной группы на алкоксирадикал. В результате образуются сложные эфиры, формула которых в общем виде записывается как R-СОО-R".

Строение сложноэфирной группы

Полярность химических связей в молекулах сложных эфиров аналогична полярности связей в карбоновых кислотах. Главным отличием является отсутствие подвижного атома водорода, на месте которого размещается углеводородный остаток. Вместе с тем электрофильный центр располагается на атоме углерода сложноэфирной группы. Но и углеродный атом алкильной группы, соединенный с ней, тоже положительно поляризован.

Электрофильность, а значит, и химические свойства сложных эфиров определяются строением углеводородного остатка, занявшего место атома Н в карбоксильной группе. Если углеводородный радикал образует с атомом кислорода сопряженную систему, то реакционная способность заметно возрастает. Так происходит, например, в акриловых и виниловых эфирах.

Физические свойства

Большинство сложных эфиров представляют собой жидкости или кристаллические вещества с приятным ароматом. Температура их кипения обычно ниже, чем у близких по значениям молекулярных масс карбоновых кислот. Что подтверждает уменьшение межмолекулярных взаимодействий, а это, в свою очередь, объясняется отсутствием водородных связей между соседними молекулами.

Однако так же, как и химические свойства сложных эфиров, физические зависят от особенностей строения молекулы. А точнее, от типа спирта и карбоновой кислоты, из которых он образован. По этому признаку сложные эфиры делят на три основные группы:

  1. Фруктовые эфиры. Они образованы из низших карбоновых кислот и таких же одноатомных спиртов. Жидкости с характерными приятными цветочно-фруктовыми запахами.
  2. Воски. Являются производными высших (число атомов углерода от 15 до 30) кислот и спиртов, имеющих по одной функциональной группе. Это пластичные вещества, которые легко размягчаются в руках. Основным компонентом пчелиного воска является мирицилпальмитат С 15 Н 31 СООС 31 Н 63 , а китайский - цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Они не растворяются в воде, но растворимы в хлороформе и бензоле.
  3. Жиры. Образованные из глицерина и средних и высших карбоновых кислот. Животные жиры, как правило, твердые при нормальных условиях, но легко плавятся при повышении температуры (сливочное масло, свиной жир и др.). Для растительных жиров характерно жидкое состояние (льняное, оливковое, соевое масла). Принципиальным отличием в строении этих двух групп, что и сказывается на различиях в физических и химических свойствах сложных эфиров, является наличие или отсутствие кратных связей в кислотном остатке. Животные жиры являются глицеридами непредельных карбоновых кислот, а растительные - предельных кислот.

Химические свойства

Эфиры реагируют с нуклеофилами, что приводит к замещению алкоксигруппы и ацилированию (или алкилированию) нуклеофильного агента. Если в структурной формуле сложного эфира имеется α-водородный атом, то возможна сложноэфирная конденсация.

1. Гидролиз. Возможен кислотный и щелочной гидролиз, представляющий собой реакцию, обратную этерификации. В первом случае гидролиз обратим, а кислота выступает в роли катализатора:

R-СОО-R" + Н 2 О <―> R-СОО-Н + R"-OH

Основной гидролиз необратим и обычно называется омылением, а натриевые и калиевые соли жирных карбоновых кислот - мылами:

R-СОО-R" + NaOH ―> R-СОО-Na + R"-OΗ

2. Аммонолиз. Нуклеофильным агентом может выступать аммиак:

R-СОО-R" + NH 3 ―> R-СО-NH 2 + R"-OH

3. Переэтерификация. Это химическое свойство сложных эфиров можно причислить также к способам их получения. Под действием спиртов в присутствии Н + или ОН - возможна замена углеводородного радикала, соединенного с кислородом:

R-СОО-R" + R""-OH ―> R-СОО-R"" + R"-OH

4. Восстановление водородом приводит к образованию молекул двух разных спиртов:

R-СО-OR" + LiAlH 4 ―> R-СΗ 2 -ОΗ + R"OH

5. Горение - еще одна типичная для сложных эфиров реакция:

2CΗ 3 -COO-CΗ 3 + 7O 2 = 6CO 2 + 6H 2 O

6. Гидрирование. Если в углеводородной цепи молекулы эфира имеются кратные связи, то по ним возможно присоединение молекул водорода, которое происходит в присутствии платины или других катализаторов. Так, например, из масел возможно получение твердых гидрогенизированных жиров (маргарина).

Применение сложных эфиров

Сложные эфиры и их производные применяются в различных отраслях промышленности. Многие из них хорошо растворяют различные органические соединения, используются в парфюмерии и пищевой промышленности, для получения полимеров и полиэфирных волокон.

Этилацетат. Используется как растворитель для нитроцеллюлозы, ацетилцеллюлозы и других полимеров, для изготовления и растворения лаков. Благодаря приятному аромату применяется в пищевой и парфюмерной промышленностях.

Бутилацетат. Также применяют в качестве растворителя, но уже и полиэфирных смол.

Винилацетат (СН 3 -СОО-СН=СН 2). Используется как основа полимера, необходимого в приготовлении клея, лаков, синтетических волокон и пленок.

Малоновый эфир. Благодаря своим особым химическим свойствам этот сложный эфир широко используется в химическом синтезе для получения карбоновых кислот, гетероциклических соединений, аминокарбоновых кислот.

Фталаты. Эфиры фталевой кислоты используют в качестве пластифицирующих добавок к полимерам и синтетическим каучукам, а диоктилфталат - еще и как репеллент.

Метилакрилат и метилметакрилат. Легко полимеризуются с образованием устойчивого к различным воздействиям листов органического стекла.